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Slow-Wave Bandpass Filters Using Ring or
Stepped-Impedance Hairpin Resonators
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Abstract—This paper proposes a new class of slow-wave band-
pass filters that uses a microstrip line periodically loaded with mi-
crostrip ring or stepped-impedance hairpin resonators. The new
slow-wave periodic structures utilize the parallel and series res-
onance characteristics of the resonators to construct a bandpass
filter. Unlike conventional slow-wave filters, the proposed bandpass
filters are designed to produce a narrow passband at the funda-
mental mode of the resonators. The new filters provide lower inser-
tion loss than that of parallel- or cross-coupled ring and stepped-
impedance hairpin bandpass filters. The calculated frequency re-
sponses of the filters agree well with experiments.

Index Terms—Bandpass filter, hairpin resonator, ring resonator,
slow-wave periodic structure.

I. INTRODUCTION

M ICROSTRIP RING and stepped-impedance hairpin res-
onators have many attractive features and can be used

in satellites, mobile phones, and other wireless communication
systems. The main advantages of the resonators are their com-
pact size, easy fabrication, narrow bandwidth, and low radiation
loss. Therefore, the resonators are widely used in the design of
filters, oscillators, and mixers [1, Chs. 2 and 7], [2, Ch. 4].

Some of the bandpass filters that use the ring resonator utilize
the dual-mode characteristic to achieve a sharp cutoff frequency
response [3]. However, the filters use perturbation notches or
stubs that make their frequency response sensitive to fabrication
uncertainties [3]. In addition, bandpass filters that use parallel-
or cross-coupling ring resonators to produce Chebyshev- or el-
liptic-function characteristics [4], [5] suffer from high insertion
loss. Recently, the ring resonator filters using high-temperature
superconductor (HTS) and micromachined circuit technologies
have demonstrated low insertion loss and a sharp cutoff fre-
quency response, but at the expense of high fabrication costs
[6].

The hairpin resonator was first introduced to reduce the
size of the conventional parallel-coupled half-wavelength
resonator with subsequent improvements made to reduce its
size [2, Ch. 4], [7]. Beyond the advantage of the compact
size, the spurious frequencies of the stepped-impedance
hairpin resonator are shifted from the integer multiples of the
fundamental resonant frequency due to the effect of the capac-
itance-load coupled lines. Also, compact size bandpass filters
using stepped-impedance hairpin resonators with parallel- or
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cross-coupling structures have shown high insertion loss [8],
[9].

An interesting slow-wave bandpass filter has been reported
[10] that uses capactively loaded parallel- and cross-coupled
open-loop ring resonators. This filter also shows high insertion
loss.

In this paper, slow-wave bandpass filters using a microstrip
line periodically loaded by ring or stepped-impedance hairpin
resonators are introduced. By using the parallel and series res-
onance characteristics of the resonators, the slow-wave peri-
odic structures perform as a bandpass filter. The new slow-wave
bandpass filters, designed at fundamental resonant frequency of
the resonators, also are different from conventional slow-wave
filters, which utilize higher order modes to build up a band-
pass filter with a wide passband [11] or to provide lowpass
or bandstop features [12], [13]. In comparison with bandpass
filters that use parallel- and cross-coupled resonators with cou-
pling gaps between the resonators, these new slow-wave band-
pass filters show lower insertion loss at similar resonant fre-
quencies [4], [5], [8], and [9]. This is an important finding since
the new filter structure uses more conductor than the parallel-
and cross-coupled structures. This implies that the new filter
topology significantly reduces the insertion loss caused in par-
allel- and cross-coupled bandpass structures by eliminating cou-
pling gaps between resonators. The performance of the new
slow-wave filters is evaluated by experiment and calculation
with good agreement.

II. A NALYSIS OF THESLOW-WAVE PERIODIC STRUCTURE

Fig. 1(a) illustrates a conventional slow-wave periodic struc-
ture. The transmission line is periodically loaded with identical
open stub elements. Each unit element includes a length of
transmission line with a length ofopen stub, where is
the input impedance looking into the open stub. The conven-
tional slow-wave periodic structure usually works as a low-pass
or stopband filter [12], [13]. Also, using higher order modes,
the conventional slow-wave periodic structure can act as a wide
band bandpass filter, by constructing two consecutive stopbands
close to the passband [11]. Considering the slow-wave periodic
structure in Fig. 1(b), a loading impedance is connected at
the end of the open stub. The input impedance is given by

for lossless line (1)

where and are the characteristic impedance and phase con-
stant of the open stub, respectively. If or with a very
small value of , the input impedance or , re-
spectively. Under these cases, the slow-wave periodic structure
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Fig. 1. Slow-wave periodic structure. (a) Conventional type. (b) With loading
Z at open end.

Fig. 2. Lossless (a) parallel and (b) series resonant circuits.

loaded by in Fig. 1(b) provides passband ( ) and
stopband ( ) characteristics. For example, the conven-
tional capacitance-load Kuroda-identity periodic structure is the
case of with [14, Ch. 8].

Fig. 2 shows lossless parallel and series resonant circuits. At
resonance, the input impedance of the parallel and series
resonant circuits is and , respectively. The input impedance

of the resonant circuits can act as the loading impedance
in Fig. 1(a) for the passband and stopband characteristics of

a slow-wave periodic structure. In practice, for the highring
and hairpin resonators, the input impedance of the resonators
shows very large and small values at parallel and series resonant
frequencies, respectively. Thus, a slow-wave periodic structure
loaded by ring or hairpin resonators with two series resonant fre-
quencies close to a parallel resonant frequency [1, Chs. 2 and 7],
[2, Ch. 4] can be designed for a bandpass filter at fundamental
mode.

The key point behind this new slow-wave filter topology is
that both the series and the parallel resonances of the loading cir-
cuit are used to achieve bandpass characteristics. The approach
can, in fact, be interpreted as using the stopbands of two series
resonances in conjunction with the passband of a parallel res-
onance to achieve a bandpass frequency response. It is noted,

Fig. 3. Slow-wave bandpass filter using one ring resonator with one coupling
gap. (a) Layout. (b) Simplified equivalent circuit.

however, that in some cases, undesired passbands below and
above the main passband may require a high-pass or bandpass
section to be used in conjunction with this approach.

III. SLOW-WAVE BANDPASS FILTERS USING

SQUARE RING RESONATORS

Fig. 3 shows a transmission line loaded by a square ring
resonator with a line-to-ring coupling structure and its simple
equivalent circuit, where is the input impedance looking
into the transmission line toward the ring resonator with
the line-to-ring coupling. As seen in Fig. 4(a), the coupling
structure includes the coupling line, one side of the square
ring resonator and a coupling gap. This coupling structure can
be treated as symmetrical coupled lines [15]. The coupling
gap between the symmetrical coupled lines is modeled as a
capacitive L-network as shown in Fig. 4(b) [16]. is the gap
capacitance per unit length, and is the capacitance per unit
length between the strip and the ground plane. These capaci-
tances, and , can be found from the even- and odd-mode
capacitances of symmetrical coupled lines [17, Ch. 3]. Fig. 4(c)
shows the equivalent circuit of the capacitive L-network,
where the input impedance of the ring resonator can be
obtained from [16]. The input impedance looks into the
line-to-ring coupling structure toward the ring resonator. The
input impedance is

(2)

where , ,
, and is the angular frequency. The
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Fig. 4. Line-to-ring coupling structure. (a) Top view. (b) Side view.
(c) Equivalent circuit.

parallel and series resonances of the ring resonator
can be obtained by setting

and (3)

The frequency response of the ring circuit can be calculated
using the equivalent circuit in Fig. 3(b). The matrix of
the ring circuit is

(4)

Fig. 5. Variation in input impedancejZ j for different lengths ofl
showing: (a) parallel and series resonances and (b) an expanded view for the
series resonances.

Fig. 6. Measured and calculated frequency response for the slow-wave
bandpass filter using one square ring resonator.

where . Using and , the passband
and stopband of the ring circuit can be obtained by calculating

and from the matrix in (4).
The ring circuit was designed at the center frequency of

2.4 GHz and fabricated on a RT/Duroid 6010.5 substrate with
a thickness mil and a relative dielectric constant
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Fig. 7. Slow-wave bandpass filter using three ring resonators. (a) Layout. (b) Simplified equivalent circuit.

Fig. 8. Measured and calculated frequency response for the slow-wave
bandpass filter using three square ring resonators.

. The dimensions of the filter are mm,
mm, mm, mm, mm,

mm. These parameter values are synthesized from
the design equations using numerical optimization to construct
a bandpass filter with attenuation poles centered at330 MHz
about the parallel resonant frequency. Fig. 5(a) shows the
calculated input impedance with parallel and two series
resonances of the ring resonator at different lengths of. The
parallel , lower and higher series resonances
corresponding to the passband and stopband of the ring circuit
in Fig. 3 are denoted by , , and , respectively. By ad-

Fig. 9. Slow-wave bandpass filter using one stepped-impedance hairpin
resonator. (a) Layout. (b) Simplified equivalent circuit.

justing the length of properly, the parallel resonance can be
centered between two series resonances. Also, Fig. 5(b) shows
an extended view for series resonances. The measured and
calculated frequency response of the ring circuit is illustrated in
Fig. 6. The filter has a fractional 3-dB bandwidth of 15.5%. The
insertion and return losses are 0.53 and 25.7 dB at 2.3 GHz,
respectively. Two attenuation poles are at 1.83 and 2.59 GHz
with attenuation level of 35.2 and 31.3 dB, respectively. The
measured unloaded of the closed-loop ring resonator is 122.
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Fig. 10. Slow-wave bandpass filter using six stepped-impedance hairpin resonators. (a) Layout. (b) Simplified equivalent circuit.

To improve the passband and rejection, a slow-wave bandpass
filter using three ring resonators has also been built. As seen in
Fig. 7, the transmission line is loaded periodically by three ring
resonators, where is the input impedance looking into
toward the ring. The filter uses the same dimensions as the filter
with a single ring resonator in Fig. 3, but with the transmission
lengths 15.686 mm and 5.5 mm, which are opti-
mized by the calculation equations to obtain wider stopbands
than the filter in Fig. 3. The frequency response of the filter
can be obtained from matrix of the equivalent circuit in
Fig. 7(b). Fig. 8 illustrates the measured and calculated results.
The filter with an elliptic-function characteristic has a 3-dB frac-
tional bandwidth of 8.5% and a passband from 2.16 to 2.34 GHz
with return loss better than 10 dB. The maximum insertion loss
in the passband is 1.45 dB with a ripple of0.09 dB. In ad-
dition, the two stop bands exhibit a rejection level larger than
50 dB within 1.76–2 GHz and 2.52–2.7 GHz. Observing the fre-
quency response of the filters in Figs. 6 and 8, the differences
between the calculated and measured results are due to the use
of a lossless calculation model.

IV. SLOW-WAVE BANDPASS FILTERS USING

STEPPED-IMPEDANCE HAIRPIN RESONATORS

The hairpin has parallel and series resonance characteris-
tics and can also be used as the loading impedancein the
slow-wave periodic structure of Fig. 1(b) to construct a bandpass
response. Fig. 9 shows the filter using one stepped-impedance
hairpin resonator and its simple equivalent circuit, where
is the input impedance looking into toward the resonator.

, the input impedance of the stepped-impedance hairpin
resonator, can be obtained from [2, Ch. 4]. Similar to the ring
circuit in Fig. 3, the frequency response of the hairpin circuit
can also be obtained from the matrix of the equivalent
circuit in Fig. 9(b). The filter was designed at the center
frequency of 2 GHz and fabricated on a RT/Duroid 6010.2
substrate with thickness mil and a relative dielectric
constant . The parameters of the filter are shown as

Fig. 11. Measured and calculated frequency response for the slow-wave
bandpass filter using six stepped-impedance hairpin resonators.

follows: mm, mm, mm, mm,
mm, mm, mm,

mm, mm, mm, and
mm. These parameter values are synthesized from the

design equations, similar to (4), using numerical optimization
to build a bandpass filter with attenuation poles centered at

530 MHz about the parallel resonant frequency. Calculated
and measured results similar to Figs. 5 and 6 have been
obtained. Also, by adjusting the length ofproperly, the two
series resonances can be centered about the parallel resonance
when mm.

Fig. 10 shows the transmission line loaded periodically by
six stepped-impedance hairpin resonators. The filter uses the
same dimensions as the filter using a single hairpin resonator
in Fig. 9, but with the transmission length mm,
which is optimized by the calculation equations for maximum
rejection. Fig. 11 illustrates the measured and calculated results.
The filter with a Chebyshev characteristic has a 3-dB fractional
bandwidth of 8.55%. A passband is from 1.84 to 1.98 GHz with
a return loss better than 10 dB. The maximum insertion loss in
the passband is 1.82 dB with a ripple of0.06 dB. In addition,
two stopbands exhibit a rejection level greater than 60 dB within
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1.32–1.57 and 2.38–2.76 GHz. The measured unloadedof the
stepped-impedance hairpin resonator is 146. Due to the use of
the lossless model for calculation, these calculated responses
show small differences from measured results.

V. CONCLUSIONS

Novel slow-wave bandpass filters using a microstrip line pe-
riodically loaded with ring or stepped-impedance hairpin res-
onators are proposed. By using the parallel and series reso-
nance characteristics of the resonators, the new slow-wave peri-
odic structures behave as bandpass filters. The new filters with
a narrow passband designed at the fundamental mode of the
resonators are different from the conventional slow-wave fil-
ters. Furthermore, the new filters have lower insertion loss than
those of filters using parallel- or cross-coupled ring and stepped-
impedance hairpin resonators. The filters have been investigated
by experiment and calculation with good agreement.
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